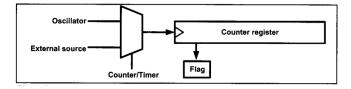
CSE 315 Microprocessors & Microcontrollers


Tanvir Ahmed Khan

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology.

September 16, 2014

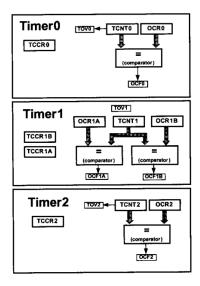
Timer/Counter Basics

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Timer Basic

Two ways to generate a time delay,

 clear the counter & wait until the counter reaches a certain number


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

load the counter & wait until the counter overflows

ATmega16 Timers

- Timer0, 8-bit
- Timer1, 16-bit
- Timer2, 8-bit

Timer Basic Registers

Timer/Counter Control Register (TCCR0)								
FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	
7							0	
Timer/Counter Register (TCNT0)								
7							0	
Output Compare Register (OCR0)								
7							0	
Timer/Counter Interrupt Mask Register (TIMSK)								
OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	
7							0	
Timer/Counter Interrupt Flag REgister (TIFR)								
OCF2	TOV2	ICFI	OCF1A	OCF1B	TOV1	OCF0	TOV0	
7							0	

D2 D1 D0 Timer0 clock selector CS02:00

- No clock source (Timer/Counter stopped) 0 0 0 ۵ 0 clk (No Prescaling) 1 clk/8 1 0 cik / 64 clk / 256 0 0 0 1 clk / 1024 1 0
 - External clock source on T0 pin. Clock on falling edge.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1 1 External clock source on T0 pin. Clock on rising edge.

Programming Timer0

Configure TCCR0,

- TCCR0 = 0b0000001;
- Load TCNT0 with initial value,
 - TCNT0 = Ob11110010;
- Check continuously TOV0,
 - while((TIFR & Ob0000001) == 0);

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Stop the timer,
 - ▶ TCCR0 = 0;
- Clear TOV0,
 - TIFR = TIFR | 0b0000001;

Simple Blink Example

```
4
 5 #include <avr/io.h>
 6
 7 void delay(void){
 8
        int i, j;
9
10
        for(i=0;i<100;i++)</pre>
        {
11
            for(j=0;j<100;j++)</pre>
12
13
                asm volatile("nop");
14
            3
15
        }
16 }
17
18 int main(void)
19 {
20
21
       DDRB = DDRB | 0b0000001:
22
       PORTB = PORTB & 0b11111110;
23
24
       while(1)
25
        {
26
            delay();
27
            PORTB = PORTB \land 0b0000001;
28
        3
29
       return 0:
30 }
31
```

```
5 #include <avr/io.h>
 6
 7 void delay(void){
       TCCR0 = 0b00000111;
 8
 9
       TCNT0 = 0b00001111;
10
       while((TIFR & 0b0000001) == 0);
11
       TCCR0 = 0;
12
       TIFR = TIFR | 0b00000001:
13 }
14
15 int main(void)
16 {
17
18
       DDRB = DDRB | 0b0000001;
19
       PORTB = PORTB & 0b11111110;
20
21
       while(1)
22
       {
23
           delay();
24
           PORTB = PORTB ^ 0b0000001;
25
       3
26
       return 0;
27 }
28
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Practice Problems

- Finding the delay for a specific TCNT0 value
 - Clock = 8 MHz, TCNT0 = 0x3E, TCCR0 = 1
 - Clock = 8 MHz, TCNT0 = 0x00, TCCR0 = 5
- Finding the value of TCNT0 for a specific delay
 - Clock = 8 MHz, output signal frequency = 16 KHz
 - Clock = 8 MHz, output signal frequency = 125 Hz, with pre-scaler = 256

ATmega16 Interrupt

- Efficiency
- Monitoring several devices

- Efficiency
- Monitoring several devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Priority

- Efficiency
- Monitoring several devices
- Priority
- Ignoring a device request

ATmega16 Interrupts

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition		
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset		
2	\$002	INT0	External Interrupt Request 0		
3	\$004	INT1	External Interrupt Request 1		
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match		
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow		
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event		
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A		
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B		
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow		
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow		
11	\$014	SPI, STC	Serial Transfer Complete		
12	\$016	USART, RXC	USART, Rx Complete		
13	\$018	USART, UDRE	USART Data Register Empty		
14	\$01A	USART, TXC	USART, Tx Complete		
15	\$01C	ADC	ADC Conversion Complete		
16	\$01E	EE_RDY	EEPROM Ready		
17	\$020	ANA_COMP	Analog Comparator		
18	\$022	TWI	Two-wire Serial Interface		
19	\$024	INT2	External Interrupt Request 2		
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match		
21	\$028	SPM_RDY	Store Program Memory Ready		

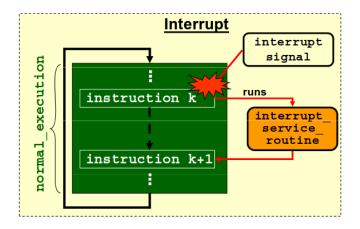
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Interrupts Service Routine

program associated with the interrupt

Interrupt Vector Table

 group of memory locations holding the addresses of ISR


Interrupt Vector Table

group of memory locations holding the addresses of ISR

Table 10-1: Interrupt Vector Table for the ATmega32 AVR

Interrupt	ROM Location (Hex)	
Reset	0000	
External Interrupt request 0	0002	
External Interrupt request 1	0004	
External Interrupt request 2	0006	
Time/Counter2 Compare Match	0008	
Time/Counter2 Overflow	000A	
Time/Counter1 Capture Event	000C	
Time/Counter1 Compare Match A	000E	
Time/Counter1 Compare Match B	0010	
Time/Counter1 Overflow	0012	
Time/Counter0 Compare Match	0014	
Time/Counter0 Overflow	0016	
SPI Transfer complete	0018	
USART, Receive complete	001A	
USART, Data Register Empty	001C	
USART, Transmit Complete	001E	
ADC Conversion complete	0020	
EEPROM ready	0022	
Analog Comparator	0024	
Two-wire Serial Interface (I2C)	0026	
Store Program Memory Ready	0028	

Interrupt Execution

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

finishes the instruction currently executing

finishes the instruction currently executing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

acknowledges the interrupt

- finishes the instruction currently executing
- acknowledges the interrupt
- saves Program Counter (also current context) onto stack

- finishes the instruction currently executing
- acknowledges the interrupt
- saves Program Counter (also current context) onto stack
- jumps to *interrupt vector table* which redirects to the address of the **interrupt service routine**

- finishes the instruction currently executing
- acknowledges the interrupt
- saves Program Counter (also current context) onto stack
- jumps to *interrupt vector table* which redirects to the address of the **interrupt service routine**

executes ISR upto RETI statement

- finishes the instruction currently executing
- acknowledges the interrupt
- saves Program Counter (also current context) onto stack
- jumps to *interrupt vector table* which redirects to the address of the **interrupt service routine**
- executes ISR upto RETI statement
- retrieves the original context and PC by popping the first byte of stack

Reference

► The avr microcontroller & embedded system, *Chapter 10*

- Muhammad Ali Mazidi
- Sarmad Naimi
- Sepehr Naimi