CSE 315
Microprocessors & Microcontrollers

Tanvir Ahmed Khan

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology.

September 16, 2014

Recap

Timer/Counter Basics

External source

Oscillator == —

Counter/Timer

Counter register

v

Timer Basic

Two ways to generate a time delay,
> clear the counter & wait until the counter reaches a certain

number
» load the counter & wait until the counter overflows

ATmegal6 Timers

» Timer0, 8-bit
» Timerl, 16-bit
» Timer2, 8-bit

Timer Basic Registers

TimerQ

Timer1 T 2?

lTCCR\AI

I (wnp-r-m) ‘ | mmvmhrl

Timer2
—

Timer/Counter Control Register (TCCR0)
FOCO |WGMO00|COMO1 COM(J(IIWGMOll CS02 I CSo1 I CS00 |
[

7

Timer/Counter Register (TCNTO0)
I N N I

7 0

Output Compare Register (OCR0)
[T T T T T T 1

7 0
Timer/Counter Interrupt Mask Register (TIMSK)
| OCIE2 |T()IE2 ‘TIC[EI |()(’IHAIUCIHB|T()IE1 |()C1E[)|T()1El) |
'['ier/Cnunlcr Interrupt Flag REgister (TIFR) !
[locr2 [tov2 [icrt Jocriaocris] tovi [ocro [Tovo |

7 0

€S02:00

54

DO Timer0 clock selector

0 No clock source (Timer/Counter stopped)

1 clk (No Prescaling)

0 ok /8

1 clk /64

0 clk /256

1 clk /1024

0 External clock source on TO pin. Clock on falling edge.
1 Extemal clock source on T pin. Clock on rising edge.

_————ococoocold
—_——co~m—~ocol

Programming Timer0

v

Configure TCCRO,
» TCCRO = 0b00000 ;

» Load TCNTO with initial value,
» TCNTO = 0b11110010;
» Check continuously TOVO,
» while ((TIFR & 0b00000001) == 0);
» Stop the timer,
» TCCRO = 0;
» Clear TOVO,

» TIFR = TIFR | 0b00000001;

Simple Blink Example

4
5 #include <avr/io.h>

4
7 void delay(vold){ S#Lndude <avr/io.h>
int i,j;
lg ?)r'(t 0;1<100;1++) TVMd dekgygvg;ggé@mn
_0; . 9 TCNTO = @b000R1111;
g ?’r(}es]‘m@’l**) o unile(CTIR & 0b08G00001) == 0);
ey 11 TCCRO -
13 asm volatile("nop"); D TR 0b00000001;
14 ¥ 133
15 14
ig 1 15 int mainCvoid)
16 {
18 int mainCvoid) 17
%g(18 DORB - DDRB | GbGG000OO1;
B DORB - DIRE | 0bdGOOGSL; %g PORTB = PORTB & 0b11111110;
22 PORTB = PORTB & 0b11111110; 21 while()
23
22
24 while(1) 23 delay();
25 { 24 PORTB| = PORTB A 0b0@0000OL;
26 delay(); 25 3
27 PORTE| = PORTB A 0b00000001; 26 return 0;
28} 27}
29 return 0; 28
30}

Practice Problems

» Finding the delay for a specific TCNTO value
» Clock = 8 MHz, TCNTO = 0x3E, TCCR0 =1
» Clock = 8 MHz, TCNTO = 0x00, TCCR0O =5
» Finding the value of TCNTO for a specific delay

» Clock = 8 MHz, output signal frequency = 16 KHz
» Clock = 8 MHz, output signal frequency = 125 Hz, with
pre-scaler = 256

Today's Topic

ATmegal6 Interrupt

Interrupts vs. Polling

Interrupts vs. Polling

» Efficiency

Interrupts vs. Polling

» Efficiency

> Monitoring several devices

Interrupts vs. Polling

» Efficiency
> Monitoring several devices
> Priority

Interrupts vs. Polling

v

Efficiency

v

Monitoring several devices

v

Priority

v

Ignoring a device request

ATmegal6 Interrupts

Program
Vector No. | Address™ Source Interrupt Definition
1 $0001" RESET External Pin, Power-on Reset, Brown-out
Reset, Waichdog Rese, and JTAG AVR
Reset
2 s002 INTO | External Intermupt Request 0
I 5004 INTH Extornal Interrupt Request 1 -
| 4 5006 TIMER2 COMP | Timer/Counter2 Compare Match
| s 5008 TIMER2 OVF | Timer/Counter2 Overflow
[} S00A | TIMERICAPT | TimerCounteri Capture Event -
7 $00C | TIMER1 COMPA | TimerCounter! Compare Match A
[SOOE | TIMER1 COMPB | Timer/Counter1 Compare Match B
9 5010 | TIMERIOVF | TimerCounter! Overflow
10 s012 TIMERO OVF | Timer/Countord Overflow
11 5014 SPI,STC | Serial Transter Complete
12 | $016 | USART.AXC | USART,Rx Complete
13 5018 | USART,UDRE | USAAT Data Register Empty
) so1A USART, TXC | USARIT. Tx Complete
| s $01C ADC ADC Conversion Complete
T SO1E EE RDY | EEPROM Ready
[$020 ANA_COMP | Analog Gomparator -
T $022 ™ Two-wire Serial Iniarlace
[0 $024 INT2 External Interrupt Requost 2
) $026 | TIMERO COMP | TimerCounter0 Comparo Maich
s 5028 SPM_RDY | Store Program Momory Ready

DA

Interrupts Service Routine

> program associated with the interrupt

Interrupt Vector Table

» group of memory locations
holding the addresses of ISR

Interrupt Vector Table

Table 10-1: Interrupt Vector Table for the ATmega32 AVR

Interrupt ROM Location (Hex)
Reset 0000
External Interrupt request 0 0002
External Interrupt request 1 0004
External Interrupt request 2 0006
ime/Counter2 Compare Match 0008
ime/Counter2 Overflow 000A
ime/Counter] Capture Event 000C
. ime/Counter] Compare Match A 000E
» group of memory locations ime/Counter| Compare Maich B 00
Overflow 00
holding the addresses of ISR e/ Countord Compare March o
[Transfer complete 00
USART, Reccive complete 00
USART, Data Register Empty 001C
USART, Transmit Complete 001E
ADC Conversion complete 0020
EEPROM ready 0022
Analog Comparator 002
Two-wire Serial Interface (12C) 0021
Store Program Memory Ready 002!

Interrupt Execution

__

: Interrupt

interrupt
signal

instruction k i
interrupt_ i

service_
routine

instruction k+l

normal execution

Steps in Interrupt Execution

Steps in Interrupt Execution

» finishes the instruction currently executing

Steps in Interrupt Execution

» finishes the instruction currently executing

» acknowledges the interrupt

Steps in Interrupt Execution

» finishes the instruction currently executing
» acknowledges the interrupt

» saves Program Counter (also current context) onto stack

Steps in Interrupt Execution

v

finishes the instruction currently executing

v

acknowledges the interrupt

v

saves Program Counter (also current context) onto stack

> jumps to interrupt vector table which redirects to the address
of the interrupt service routine

Steps in Interrupt Execution

v

finishes the instruction currently executing

v

acknowledges the interrupt

v

saves Program Counter (also current context) onto stack

> jumps to interrupt vector table which redirects to the address
of the interrupt service routine

executes ISR upto RETI statement

v

Steps in Interrupt Execution

» finishes the instruction currently executing
» acknowledges the interrupt
» saves Program Counter (also current context) onto stack

> jumps to interrupt vector table which redirects to the address
of the interrupt service routine

» executes ISR upto RETI statement

> retrieves the original context and PC by popping the first byte
of stack

Reference

» The avr microcontroller & embedded system,

» Muhammad Ali Mazidi
» Sarmad Naimi
» Sepehr Naimi

