
CSE 315
Microprocessors & Microcontrollers

Tanvir Ahmed Khan

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology.

September 16, 2014



Recap



Timer/Counter Basics



Timer Basic

Two ways to generate a time delay,

I clear the counter & wait until the counter reaches a certain
number

I load the counter & wait until the counter overflows



ATmega16 Timers

I Timer0, 8-bit

I Timer1, 16-bit

I Timer2, 8-bit



Timer Basic Registers



Programming Timer0

I Configure TCCR0,
I TCCR0 = 0b00000001;

I Load TCNT0 with initial value,
I TCNT0 = 0b11110010;

I Check continuously TOV0,
I while((TIFR & 0b00000001) == 0);

I Stop the timer,
I TCCR0 = 0;

I Clear TOV0,
I TIFR = TIFR | 0b00000001;



Simple Blink Example



Practice Problems

I Finding the delay for a specific TCNT0 value
I Clock = 8 MHz, TCNT0 = 0x3E, TCCR0 = 1
I Clock = 8 MHz, TCNT0 = 0x00, TCCR0 = 5

I Finding the value of TCNT0 for a specific delay
I Clock = 8 MHz, output signal frequency = 16 KHz
I Clock = 8 MHz, output signal frequency = 125 Hz, with

pre-scaler = 256



Today’s Topic

ATmega16 Interrupt



Interrupts vs. Polling

I Efficiency

I Monitoring several devices

I Priority

I Ignoring a device request



Interrupts vs. Polling

I Efficiency

I Monitoring several devices

I Priority

I Ignoring a device request



Interrupts vs. Polling

I Efficiency

I Monitoring several devices

I Priority

I Ignoring a device request



Interrupts vs. Polling

I Efficiency

I Monitoring several devices

I Priority

I Ignoring a device request



Interrupts vs. Polling

I Efficiency

I Monitoring several devices

I Priority

I Ignoring a device request



ATmega16 Interrupts



Interrupts Service Routine

I program associated with the interrupt



Interrupt Vector Table

I group of memory locations
holding the addresses of ISR



Interrupt Vector Table

I group of memory locations
holding the addresses of ISR



Interrupt Execution



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Steps in Interrupt Execution

I finishes the instruction currently executing

I acknowledges the interrupt

I saves Program Counter (also current context) onto stack

I jumps to interrupt vector table which redirects to the address
of the interrupt service routine

I executes ISR upto RETI statement

I retrieves the original context and PC by popping the first byte
of stack



Reference

I The avr microcontroller & embedded system, Chapter 10
I Muhammad Ali Mazidi
I Sarmad Naimi
I Sepehr Naimi


