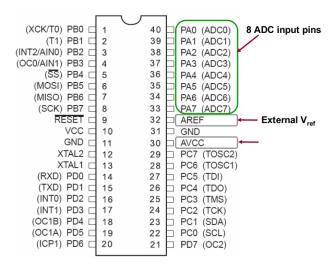
CSE 315 Microprocessors & Microcontrollers

Tanvir Ahmed Khan


Department of Computer Science and Engineering Bangladesh University of Engineering and Technology.

October 25, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

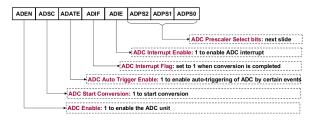
ATmega16/32 ADC Relevant Pin Diagram

- 4 日 2 4 日 2 4 日 2 4 日 2 9 9 9 9 9

ATmega16/32 ADC Features

- 10-bit ADC
- 2 output registers,
 - ADCH:ADCL
 - 16-bits, 6-bits are unused
 - Option to adjust left or right
- 8 Analog input channels,
 - 7 differential input
 - with optional gain of 10x & 200x
 - However, only one conversion at a time
- V_{ref} options,
 - ► Analog V_{cc}, 5V
 - internal 2.56V
 - external AREF pin
- ADC clock rate != MCU CPU clock rate
 - selection of pre-scaler
 - AD Conversion takes at-least 13 ADC clock cycles

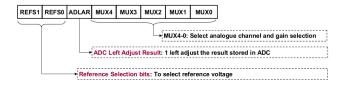
ADC Programming


Major Relevant registers

► ADCH:ADCL

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ADCSRA
- ADMUX
- ► SFIOR


ADC Programming ADCSRA Register

ADPS2	ADPS1	ADPS0	ADC Clock
0	0	0	Reserved
0	0	1	CK/2
0	1	0	CK/4
0	1	1	CK/8
1	0	0	CK/16
1	0	1	CK/32
1	1	0	CK/64
1	1	1	CK/128

- Initialization,
 - Polling, ADCSRA = 0b10000001;
 - Interrupt, ADCSRA = 0b10001001;
- Conversion Start,
 - ADCSRA = ADCSRA | Ob01000000;

ADC Programming ADMUX Register

REFS1	REFS0	V _{ref}	
0	0	AREF pin	Set externally
0	1	AVCC pin	Same as VCC
1	0	Reserved	
1	1	Internal 2.56 V	Fixed regardless of VCC value

Left-Justified	ADCH	ADCL
ADLAR = 1	D9 D8 D7 D6 D5 D4 D3 D2	D1 D0 UNUSED
ADLAR = 0 Right-Justified		D7 D6 D5 D4 D3 D2 D1 D0

Table 13-4: V_{ref} Source Selection Table for AVR

Sample ADC Program Polling

```
2
3 #include <avr/io.h>
 4
5 int main(void)
 6 {
7
      ADCSRA = 0b10000001:
      ADMUX = 0b11100000;
 8
 9
10
      DDRA = DDRB = 0b111111111;
11
      while(1)
12
13
       {
14
           ADCSRA = ADCSRA | 0b01000000:
15
           while((ADCSRA & Ob00010000) == 0){}
16
           PORTA = ADCH;
17
           PORTB = ADCL;
18
      }
19
20
       return 0;
21 }
```

Sample ADC Program

Interrupt

```
2
 3 #include <avr/io.h>
 4 #include <avr/interrupt.h>
 5
 6 ISR(ADC_vect)
 7 {
 8
       PORTA = ADCH;
       PORTB = ADCL:
 9
10
       ADCSRA = ADCSRA | 0b01000000:
11 }
12
13 int main(void)
14 {
15
      ADCSRA = 0b10001001;
16
       ADMUX = 0b11100000;
17
18
      DDRA = DDRB = 0b11111111:
19
      sei();
20
       ADCSRA = ADCSRA | 0b01000000;
21
22
       while(1)
23
       1
24
25
26
       return 0:
27 }
```

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

ATmega16 Serial Communications

・ロト・雪ト・ヨト・ヨー うへの

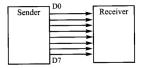
Computers transfer data in 2 ways,

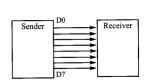
Computers transfer data in 2 ways,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Parallel Communication

Computers transfer data in 2 ways,

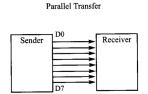

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


- Parallel Communication
- Serial Communication

 multiple wire lines are used to transfer data

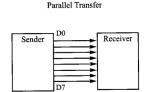
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Parallel Transfer

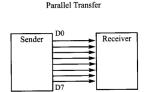


Parallel Transfer

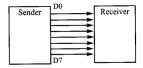
 multiple wire lines are used to transfer data


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Advantage,


 multiple wire lines are used to transfer data

- Advantage,
 - Speed


 multiple wire lines are used to transfer data

- Advantage,
 - Speed
- Disadvantage,

- multiple wire lines are used to transfer data
- Advantage,
 - Speed
- Disadvantage,
 - Distance cannot be great

- multiple wire lines are used to transfer data
- Advantage,
 - Speed
- Disadvantage,
 - Distance cannot be great

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 Example, computer to printer data transfer

 data is sent one bit at a time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Serial Transfer

 data is sent one bit at a time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Advantage,

Serial Transfer

Serial Transfer

- data is sent one bit at a time
- Advantage,
 - larger distances

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- data is sent one bit at a time
- Advantage,
 - larger distances

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

cheaper

- data is sent one bit at a time
- Advantage,
 - larger distances
 - cheaper
 - ► fewer I/O pins

- data is sent one bit at a time
- Advantage,
 - larger distances
 - cheaper
 - ► fewer I/O pins
 - easy synchronization

- data is sent one bit at a time
- Advantage,
 - larger distances
 - cheaper
 - ► fewer I/O pins
 - easy synchronization

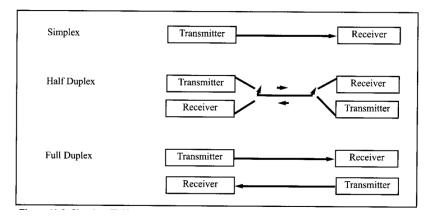
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Disadvantage,

- data is sent one bit at a time
- Advantage,
 - larger distances
 - cheaper
 - ► fewer I/O pins
 - easy synchronization
- Disadvantage,
 - relatively slower

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- data is sent one bit at a time
- Advantage,
 - larger distances
 - cheaper
 - fewer I/O pins
 - easy synchronization


- Disadvantage,
 - relatively slower
- Example, USB

Synchronization in Serial Communications

- Synchronous method,
 - transfers a block of data at a time

- Asynchronous method,
 - transfers a single byte at a time

Simplex, Half- & Full-Duplex Data Transfer

Asynchronous Serial Communication

(ロ)、

Data Framing

Asynchronous Serial Communication

Data Framing

character-oriented data transfer

(ロ)、(型)、(E)、(E)、 E) の(の)

Data Framing

character-oriented data transfer

(ロ)、(型)、(E)、(E)、 E) の(の)

Framing

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Start bit

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Start bit
 - always one bit

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

- Start bit
 - always one bit
 - always 0(low)

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

- Start bit
 - always one bit
 - always 0(low)
- Stop bit

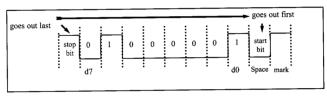
Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Start bit
 - always one bit
 - always 0(low)
- Stop bit
 - can be one or two bits

Data Framing


- character-oriented data transfer
- Framing
 - placing each character between start & stop bits

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Start bit
 - always one bit
 - always 0(low)
- Stop bit
 - can be one or two bits
 - always 1(high)

Data Framing

- character-oriented data transfer
- Framing
 - placing each character between start & stop bits
- Start bit
 - always one bit
 - always 0(low)
- Stop bit
 - can be one or two bits
 - always 1(high)

Framing of 'A'(0x41)

<□ > < @ > < E > < E > E のQ @

bits per second

bps

- bits per second
- baud rate
 - number of signal changes per second

► bps

- bits per second
- baud rate
 - number of signal changes per second

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

generally, bps != baud rate

► bps

- bits per second
- baud rate
 - number of signal changes per second
- generally, bps != baud rate
 - ▶ for some coding system, bps == baud rate

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 allow compatibility among data communication equipments of various manufacturers

 allow compatibility among data communication equipments of various manufacturers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

initially set in 1960s

 allow compatibility among data communication equipments of various manufacturers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- initially set in 1960s
- PC COM ports supports this Standard

 allow compatibility among data communication equipments of various manufacturers

- initially set in 1960s
- PC COM ports supports this Standard
- not compatible with TTL family

 allow compatibility among data communication equipments of various manufacturers

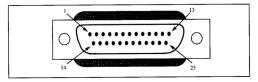
- initially set in 1960s
- PC COM ports supports this Standard
- not compatible with TTL family
 - \blacktriangleright 0 = +3 to +25 V

 allow compatibility among data communication equipments of various manufacturers

- initially set in 1960s
- PC COM ports supports this Standard
- not compatible with TTL family

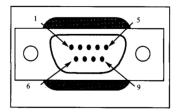
▶ 1 = -3 to -25 V

 allow compatibility among data communication equipments of various manufacturers

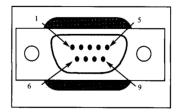

- initially set in 1960s
- PC COM ports supports this Standard
- not compatible with TTL family

- ▶ 1 = -3 to -25 V
- we will need voltage converter

 allow compatibility among data communication equipments of various manufacturers

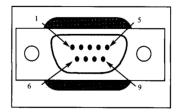

- initially set in 1960s
- PC COM ports supports this Standard
- not compatible with TTL family
 - \blacktriangleright 0 = +3 to +25 V
 - ▶ 1 = -3 to -25 V
- we will need voltage converter
 - MAX232

Continued


Original RS232 Connector DB-25

Continued

9-pin Connector for DB-9


Continued

9-pin Connector for DB-9


Pin	Description
1	Data carrier detect (DCD)
2	Received data (RxD)
3	Transmitted data (TxD)
4	Data terminal ready (DTR)
5	Signal ground (GND)
6	Data set ready (DSR)
7	Request to send (RTS)
8	Clear to send (CTS)
9	Ring indicator (RI)

Continued

9-pin Connector for DB-9

Pin	Description
1	Data carrier detect (DCD)
2	Received data (RxD)
3	Transmitted data (TxD)
<u>4</u> 5	Data terminal ready (DTR)
5	Signal ground (GND)
6	Data set ready (DSR)
7	Request to send (RTS)
8	Clear to send (CTS)
9	Ring indicator (RI)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Reference

► The avr microcontroller & embedded system, *Chapter 11*

- Muhammad Ali Mazidi
- Sarmad Naimi
- Sepehr Naimi